Extension of Bayesian Inference except for NLNG Problem Statement.
See Maximum A Posteriori perspective of inference as well. We will be using Gauss-Newton Method
Predict
Following our model, we can linearize it about an operating point.
The notation is used to indicate that the Jacobian with respect to the noise is incorporated into the quantity.
We can lift this into lifted matrix form like in the previous Bayesian Inference
\boldsymbol{\nu} = \begin{bmatrix} \mathbf{f}(\mathbf{x}_{\text{op},0}, \mathbf{v}_1, \mathbf{0}) - \mathbf{F}_0\mathbf{x}_{\text{op},0} \\ \mathbf{f}(\mathbf{x}_{\text{op},1}, \mathbf{v}_2, \mathbf{0}) - \mathbf{F}_1\mathbf{x}_{\text{op},1} \\ \vdots \\ \mathbf{f}(\mathbf{x}_{\text{op},K-1}, \mathbf{v}_K, \mathbf{0}) - \mathbf{F}_{K-1}\mathbf{x}_{\text{op},K-1} \end{bmatrix} $$ $$ \mathbf{F} = \begin{bmatrix} \mathbf{1} & & & & \\ \mathbf{F}_0 & \mathbf{1} & & & \\ \mathbf{F}_1\mathbf{F}_0 & \mathbf{F}_1 & \mathbf{1} & & \\ \vdots & \vdots & \vdots & \ddots & \\ \mathbf{F}_{K-2}\cdots\mathbf{F}_0 & \mathbf{F}_{K-2}\cdots\mathbf{F}_1 & \mathbf{F}_{K-2}\cdots\mathbf{F}_2 & \cdots & \mathbf{1} \\ \mathbf{F}_{K-1}\cdots\mathbf{F}_0 & \mathbf{F}_{K-1}\cdots\mathbf{F}_1 & \mathbf{F}_{K-1}\cdots\mathbf{F}_2 & \cdots & \mathbf{F}_{K-1} & \mathbf{1} \end{bmatrix} $$ $$ \mathbf{Q}' = \text{diag}(\bar{\mathbf{P}}_0, \mathbf{Q}_1', \mathbf{Q}_2', \ldots, \mathbf{Q}_K') $$and $\mathbf{w}' \sim \mathcal{N}(\mathbf{0}, \mathbf{Q}')$. From this, we can derive the mean and covariance\check{\mathbf{x}} = E[\mathbf{x}] = E[\mathbf{F}(\boldsymbol{\nu} + \mathbf{w}’)] = \mathbf{F}\boldsymbol{\nu}
\check{\mathbf{P}} = E\left[(\mathbf{x} - E[\mathbf{x}])(\mathbf{x} - E[\mathbf{x}])^T\right] = \mathbf{F} E\left[\mathbf{w}\mathbf{w}‘^T\right] \mathbf{F}^T = \mathbf{F}\mathbf{Q}‘\mathbf{F}
Thus, the prior can be summarized as $\mathbf{x} \sim \mathcal{N}(\mathbf{F}\boldsymbol{\nu}, \mathbf{F}\mathbf{Q}'\mathbf{F}^T)$. # Update\mathbf{y}k \approx \mathbf{g}(\mathbf{x}{\text{op},k}, \mathbf{0}) + \mathbf{G}k(\mathbf{x}{k-1} - \mathbf{x}_{\text{op},k-1}) + \mathbf{n}_k’
\mathbf{y} = \mathbf{y}{\text{op}} + \mathbf{G}(\mathbf{x} - \mathbf{x}{\text{op}}) + \mathbf{n}’
\mathbf{y}{\text{op}} = \begin{bmatrix} \mathbf{g}(\mathbf{x}{\text{op},0}, \mathbf{0}) \ \mathbf{g}(\mathbf{x}{\text{op},1}, \mathbf{0}) \ \vdots \ \mathbf{g}(\mathbf{x}{\text{op},K}, \mathbf{0}) \end{bmatrix} \mathbf{G} = \text{diag}(\mathbf{G}_0, \mathbf{G}_1, \mathbf{G}_2, \ldots, \mathbf{G}_K) \mathbf{R} = \text{diag}(\mathbf{R}_0’, \mathbf{R}_1’, \mathbf{R}_2’, \ldots, \mathbf{R}_K’) $$ and .
E[\mathbf{y}] = \mathbf{y}_{\text{op}} + \mathbf{G}(\bar{\mathbf{x}} - \mathbf{x}_{\text{op}}) $$ $$ E\left[(\mathbf{y} - E[\mathbf{y}])(\mathbf{y} - E[\mathbf{y}])^T\right] = \mathbf{G}\bar{\mathbf{P}}\mathbf{G}^T + \mathbf{R}' $$ $$ E\left[(\mathbf{y} - E[\mathbf{y}])(\mathbf{x} - E[\mathbf{x}])^T\right] = \mathbf{G}\bar{\mathbf{P}} $$ With these quantities in hand, we can write a [[Joint Gaussian PDFs]] for the lifted trajectory and measurements asp(\mathbf{x}, \mathbf{y}|\boldsymbol{\nu}) = \mathcal{N}\left(\begin{bmatrix} \check{\mathbf{x}} \ \mathbf{y}{\text{op}} + \mathbf{G}(\check{\mathbf{x}} - \mathbf{x}{\text{op}}) \end{bmatrix}, \begin{bmatrix} \check{\mathbf{P}} & \check{\mathbf{P}}\mathbf{G}^T \ \mathbf{G}\check{\mathbf{P}} & \mathbf{G}\check{\mathbf{P}}\mathbf{G}^T + \mathbf{R}’ \end{bmatrix}\right)
p(\mathbf{x}|\boldsymbol{\nu}, \mathbf{y}) = \mathcal{N}(\hat{\mathbf{x}}, \hat{\mathbf{P}})
\mathbf{K} = \check{\mathbf{P}}\mathbf{G}^T(\mathbf{G}\check{\mathbf{P}}\mathbf{G}^T + \mathbf{R}’)^{-1}
\hat{\mathbf{x}} = \check{\mathbf{x}} + \mathbf{K}(\mathbf{y} - \mathbf{y}{\text{op}} - \mathbf{G}(\check{\mathbf{x}} - \mathbf{x}{\text{op}}))
\left(\check{\mathbf{P}}^{-1} + \mathbf{G}^T\mathbf{R}’^{-1}\mathbf{G}\right) \delta\mathbf{x}^* = \check{\mathbf{P}}^{-1}(\check{\mathbf{x}} - \mathbf{x}{\text{op}}) + \mathbf{G}^T\mathbf{R}’^{-1}(\mathbf{y} - \mathbf{y}{\text{op}}) where $\delta\mathbf{x}^* = \hat{\mathbf{x}} - \mathbf{x}_{\text{op}}$. Inserting the details of the prior, this becomes \underbrace{\left(\mathbf{F}^{-T}\mathbf{Q}’^{-1}\mathbf{F}^{-1} + \mathbf{G}^T\mathbf{R}’^{-1}\mathbf{G}\right)}{\text{block-tridiagonal}} \delta\mathbf{x}^* = \mathbf{F}^{-T}\mathbf{Q}’^{-1}(\boldsymbol{\nu} - \mathbf{F}^{-1}\mathbf{x}{\text{op}}) + \mathbf{G}^T\mathbf{R}’^{-1}(\mathbf{y} - \mathbf{y}_{\text{op}})
\mathbf{H} = \begin{bmatrix} \mathbf{F}^{-1} \ \mathbf{G} \end{bmatrix}, \quad \mathbf{W} = \text{diag}(\mathbf{Q}’, \mathbf{R}’), \quad \mathbf{e}(\mathbf{x}{\text{op}}) = \begin{bmatrix} \boldsymbol{\nu} - \mathbf{F}^{-1}\mathbf{x}{\text{op}} \ \mathbf{y} - \mathbf{y}_{\text{op}} \end{bmatrix}
\underbrace{(\mathbf{H}^T\mathbf{W}^{-1}\mathbf{H})}{\text{block-tridiagonal}} \delta\mathbf{x}^* = \mathbf{H}^T\mathbf{W}^{-1}\mathbf{e}(\mathbf{x}{\text{op}})
\hat{\mathbf{P}}=(\mathbf{H}^T\mathbf{W}^{-1}\mathbf{H})^{-1}
