Following Multivariate Gaussian , we can also design a joint PDF of two multivariate gaussians.
p ( x , y ) = N ( [ μ x μ y ] , [ Σ xx Σ y x Σ x y Σ yy ] )
Σ x y = Σ y x T
Which if expanded looks like
( 2 π ) d /2 [ Σ xx Σ y x Σ x y Σ yy ] 1/2 1 exp ( − 2 1 ( [ x y ] − [ μ x μ y ] ) T [ Σ xx Σ y x Σ x y Σ yy ] − 1 ( [ x y ] − [ μ x μ y ] ) )
We can always represent a joint probability as the product of two factors
p ( x , y ) = p ( x ∣ y ) p ( y )
So you can definitely split a Joint Gaussian into something similar. To do so, we need to use something called the Schur Complement
[ Σ xx Σ y x Σ x y Σ yy ] = [ 1 0 Σ x y Σ yy − 1 1 ] [ Σ xx − Σ x y Σ yy − 1 Σ y x 0 0 Σ yy ] [ 1 Σ yy − 1 Σ y x 0 1 ]
Inverting this we get
[ Σ xx Σ y x Σ x y Σ yy ] − 1 = [ 1 − Σ yy − 1 Σ y x 0 1 ] [ ( Σ xx − Σ x y Σ yy − 1 Σ y x ) − 1 0 0 Σ yy − 1 ] [ 1 0 − Σ x y Σ yy − 1 1 ]
If we use this to analyze the quadratic part of the Gaussian PDF…
( [ x y ] − [ μ x μ y ] ) T [ Σ xx Σ y x Σ x y Σ yy ] − 1 ( [ x y ] − [ μ x μ y ] )
= ( [ x y ] − [ μ x μ y ] ) T [ 1 − Σ yy − 1 Σ y x 0 1 ] [ ( Σ xx − Σ x y Σ yy − 1 Σ y x ) − 1 0 0 Σ yy − 1 ] [ 1 0 − Σ x y Σ yy − 1 1 ] ( [ x y ] − [ μ x μ y ] )
= p ( x ∣ y ) ( x − μ x − Σ xy Σ yy − 1 ( y − μ y ) ) T ( Σ xx − Σ xy Σ yy − 1 Σ yx ) − 1 ( x − μ x − Σ xy Σ yy − 1 ( y − μ y )) + p ( y ) ( y − μ y ) T Σ yy − 1 ( y − μ y )
^^ Because we are looking at the quadratic part of the Joint Gaussian and addition means multiplication!!
This gets us the following breakdown of the Joint Gaussian Distribution
p ( x , y ) = p ( x ∣ y ) p ( y )
p ( x ∣ y ) = N ( μ x − Σ xy Σ yy − 1 ( y − μ y ) , Σ xx − Σ xy Σ yy − 1 Σ yx )
p ( y ) = N ( μ y , Σ yy )