g[k]=Z−1(G[z])(Definition of impulse response)=Z−1(G[∞]+i=1∑nj=1∑ni(z−pi)jci,j)=G[∞]Z−1(1)+i=1∑nj=1∑nici,jZ−1((z−pi)j1)=G[∞]⋅δ[k]+i=1∑nj=1∑nici,jk!n(n−1)…(n−k+1)pik−j
Proof of Part 1
Given: All poles of G[z] lie in DWTS: k→∞limg[k]=0G[z] is real, rational, and proper⟹g[k]=G[∞]δ[k]+i=1∑nj=1∑nici,j(j−1k−1)pik−j
where δ is 1 when k=0 and 0 otherwise. so that term is 0
Let G[z]/P(s) be a real, ration, proper, and stable transfer function. Let u[k]/u(t) be a unit step input to such transfer functions. Then we will see that